Load Frequency Control of Multiple-area Power Systems

نویسندگان

  • YAO ZHANG
  • Lili Dong
  • Yi Xu
  • Shuang Wu
چکیده

In an interconnected power system, as a power load demand varies randomly, both area frequency and tie-line power interchange also vary. The objectives of load frequency control (LFC) are to minimize the transient deviations in theses variables (area frequency and tie-line power interchange) and to ensure their steady state errors to be zeros. When dealing with the LFC problem of power systems, unexpected external disturbances, parameter uncertainties and the model uncertainties of the power system pose big challenges for controller design. Active disturbance rejection control (ADRC), as an increasingly popular practical control technique, has the advantages of requiring little information from the plant model and being robust against disturbances and uncertainties. This thesis presents a solution to the LFC problem based on ADRC. The controller is constructed for a three-area power system with different turbine units including non-reheat, reheat and hydraulic units in different areas. The dynamic model of the power system and the controller design based on the model are elaborated in the thesis. Simulation results and frequency-domain analyses proved that ADRC controller is attractive to the LFC problem in its stability and robustness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Class of Decentralized Interaction Estimators for Load Frequency Control in Multi-Area Power Systems

Load Frequency Control (LFC) has received considerable attention during last decades. This paper proposes a new method for designing decentralized interaction estimators for interconnected large-scale systems and utilizes it to multi-area power systems. For each local area, a local estimator is designed to estimate the interactions of this area using only the local output measurements. In fact,...

متن کامل

Load Frequency Control in Two Area Power System Using Sliding Mode Control

In this article, the sliding mode control of frequency load control of power systems is studied. The study areaconsists of a system of water and heat. First, a mathematical model of the proposed system disturbances ismade and then sliding control mode for frequency load control is provided. By the system simulation andsliding mode control, it can be shown that the damping of oscillations is wel...

متن کامل

Load frequency control of two-area interconnected power system using fuzzy logic control approach

Power systems are composed of power units that are constantly connected to each other and the electric power flux is constantly moving between them. All systems must be implemented in such a way that not only under normal conditions but also unwanted inputs or disturbances, are applied. It also remains stable or returns to a stable name at the earliest possible time. The fundamental factors...

متن کامل

Load-Frequency Control: a GA based Bayesian Networks Multi-agent System

Bayesian Networks (BN) provides a robust probabilistic method of reasoning under uncertainty. They have been successfully applied in a variety of real-world tasks but they have received little attention in the area of load-frequency control (LFC). In practice, LFC systems use proportional-integral controllers. However since these controllers are designed using a linear model, the nonlinearities...

متن کامل

Optimal Adjustment of Three-Term Controller and Two-Term Compensator Performances in Hydro Power Systems for Load Frequency Control

An important issue with respect to the hydraulic power systems is the frequency stabilization. To design Load Frequency Control (LFC) with high efficiency, control parameters need to be adjusted so that the system frequency remains stable even under changeable conditions. Controlling the frequency and changes in the turbine time constant requires that three term control parameters of Proportion...

متن کامل

Multi-Stage Fuzzy Load Frequency Control Based on Multi-objective Harmony Search Algorithm in Deregulated Environment

A new Multi-Stage Fuzzy (MSF) controller based on Multi-objective Harmony Search Algorithm (MOHSA) is proposed in this paper to solve the Load Frequency Control (LFC) problem of power systems in deregulated environment. LFC problem are caused by load perturbations, which continuously disturb the normal operation of power system. The objectives of LFC are to mini small size the transient deviati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009